
The Art of the Meta-Aspect Protocol

Tom Dinkelaker Mira Mezini Christoph Bockisch
Technische Universität Darmstadt

Hochschulstrasse 10
Darmstadt, Germany

{dinkelaker,mezini,bockisch}@informatik.tu-darmstadt.de

ABSTRACT
Alternative semantics for aspect-oriented abstractions can
be defined by language designers using extensible aspect
compiler frameworks. However, application developers are
prevented from tailoring the language semantics in an appli-
cation-specific manner. To address this problem, we pro-
pose an architecture for aspect-oriented languages with an
explicit meta-interface to language semantics. We demon-
strate the benefits of such an architecture by presenting sev-
eral scenarios in which aspect-oriented programs use the
meta-interface of the language to tailor its semantics to a
particular application execution context.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Language Constructs and
Features—Classes and Objects, Frameworks; D.2.11 [Soft-
ware Architectures]: Languages

General Terms
Design, Languages

Keywords
Aspect-Oriented Programming, Meta-Object Protocols, Open
Implementation, Debugging, Aspect Interactions

1. INTRODUCTION
Within a particular programming paradigm a broad range

of semantical variations may be available for certain mech-
anisms; e.g., different semantics for method dispatch have
been proposed for object-oriented languages. However, most
languages do not allow programs written in the language to
change the semantics built into the implementations of their
compilers, respectively their runtime environments.

Kiczales et al. have proposed meta-object protocols [27]
(MOP for short) to open up the implementations of object-
oriented programming languages to systematically support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’09, March 2–6, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-442-3/09/03 ...$5.00.

alternative semantics. “Metaobject protocols are interfaces
to the language that give users the ability to incrementally
modify the language’s behavior and implementation” [27].
MOPs have been, e.g., used to realize flexible implemen-
tation strategies for inheritance and class instantiation that
can be adapted by users of the language.

This flexibility is possible because (part of) the semantics
of objects is reified in meta-objects associated with them.
By exchanging these meta-objects, alternative semantics can
be plugged-in resulting in a new variant OO language [27].
As a consequence, the same object-oriented program can be
interpreted under different semantics.

Similar to object-oriented languages, different languages
for aspect-oriented programming (AOP) [26, 25] expose a
large variety in their semantics. Different realizations are
possible for aspect instantiation, scoping, advice ordering,
etc., corresponding to different user requirements on the as-
pect language in different application domains. Yet, most
aspect-oriented languages only provide one rigid form of se-
mantics.

There are open platforms (compilers, interpreters, run-
times) for aspect-oriented (AO for short) languages that al-
low to provide alternative semantics for subsets of language
semantics. Examples for supported adaptations are: new
pointcut designators [36, 2], new join points [47], and ad-
vice composition orders [45, 46, 31]. However, there are two
drawbacks in the extensibility supported by such extensible
AO compilers and runtimes.

First, run-time adaptations of language semantics by ap-
plications are not supported. To motivate dynamic adap-
tation of AO language semantics, consider the mechanism
for handling aspect interactions. Detecting aspect interac-
tions and resolving potential conflicts depends on the strat-
egy that is built into the infrastructure to compose mul-
tiple aspects at a shared join point. For example, with
existing technology the strategy composes interacting as-
pects in a fixed order specified by the user. Nonetheless
the strategy for coordinating aspect interactions may de-
pend on the run-time state of application objects and as-
pects; such interactions are also called semantical [12, 28]
and more precisely context-dependent [41]. Conflicts aris-
ing from context-dependent interactions cannot be resolved
by any static ordering but only by dynamically changing
the aspect composition strategy according to the applica-
tion context.

Second, language technology based on open compilers/run-
times lacks regularity in the programming model: different
technologies and programming models are needed for ex-

51

tending the language and for using the language to program
application semantics. For instance, when extending the
language semantics supported by the abc compiler [2], ad-
vanced compiler technology – with a steep learning curve –
such as attribute grammars and extensions thereof [1] need
to be known and applied. In contrast, AO technology is used
for programing the application logic using the extended se-
mantics. Non-regular technologies do not scale well; what
is needed is an adaptation mechanism for semantics that is
available to application developers.

In this paper, we propose the concept of an AO language
with an integrated meta-aspect protocol. The proposed lan-
guage follows the open implementation design principle [24]
and is inspired by meta-object protocols; it provides a meta-
interface to its implementation, which opens up the aspect
language semantics for dynamic user adaptations. When us-
ing the meta-aspect protocol, the same set of aspects can be
interpreted under different semantics. Analogous to MOPs,
this flexibility is enabled by reifying important parts of the
language semantics as first-class entities available to AO pro-
grams. We have implemented the concept as an open run-
time called Pluggable and OPen Aspect RunTime (POPART
for short), on top of the meta-object protocol of Groovy [18].
Users can tailor the default AO semantics for special needs
and experiment with the semantics by providing a possibly
application-specific extension of the meta-aspect protocol.
The POPART programs and user extensions are compiled
to Java bytecode that then can be executed in the Java VM.
To demonstrate the usefulness of POPART’s meta-aspect
protocol, we have used it to implement diverse variations of
AO semantics which are flexibly selected by AO programs1.

The contributions of this paper are twofold:

• To the best of our knowledge, this is the first paper to
propose AO language technology with a meta-aspect
protocol. While related work has expressed the need
for meta-aspect protocols [5, 40], no concrete concept
has been proposed so far.

• We demonstrate the benefits of meta-aspect protocols
by implementing new variant languages that solve non-
trivial problems in AOP. The applications of the pro-
posed meta-aspect protocol range from providing sup-
port for debugging residual pointcuts over resolving as-
pect interactions that depend on the dynamic program
context up to enabling dynamic aspect deployment.

The remainder of the paper is structured as follows. Sec. 2
provides some background knowledge on open language im-
plementations and meta-object protocols as well as their im-
plementation in Groovy. Sec. 3 discusses the concept of the
meta-aspect protocol and presents details of the aspect run-
time that we have built as a proof-of-concept. Sec. 4 evalu-
ates the concept by applying the proposed meta-aspect pro-
tocol to implement several language variations. Sec. 5 dis-
cusses related work and Sec. 6 concludes the paper.

2. BACKGROUND
In this section we summarize concepts upon which our

meta-aspect protocol is based and their realization in Groovy.

1The source code of POPART and all examples in the paper
can be downloaded from: http://www.stg.tu-darmstadt.
de/popart.

invokeMethod(…)
...

<<meta-object>>
MetaClassImpl

metaClass :
MetaClassImpl

...

Object

*
1

<<meta-object link>>

invokeMethod(…)
...

<<meta-object>>
ClosureMetaClass

owner : Object
delegate : Object
...

Closure

invokeMethod(…)
...

<<interface>>
MetaObject-
Protocol

getMetaClass()
setMetaClass(...)
...

<<interface>>
GroovyObject

Figure 1: The Meta-Object Protocol of Groovy

2.1 Open Implementation and
Meta-Object Protocols

The open implementation [24] design principle proposes
to expose a part of the implementation strategy of systems
(operating systems, databases, etc.) to the application-level.
A system built according to the open implementation princi-
ple provides two orthogonal interfaces: the so-called primary
interface, exposes to applications the primary functional-
ity of the system. The other interface, called the meta-
interface, provides application-level access to the implemen-
tation strategy of the primary-interface. Using the meta-
interface allows users to change the implementation strat-
egy behind the primary interface that is hidden for applica-
tions. This principle allows system designers to design their
system open for later (unforeseen) adaptations. In particu-
lar, a meta-object protocol is an open implementation of an
object-oriented language.

Meta-objects provide high-level and reflective operations,
called meta-methods, that interpret object semantics at the
meta level (e.g., method dispatch). Meta-object protocols
(MOP) [27] define workflows in which these meta-methods
participate to build an extensible semantics of the language.
Thereby, a MOP-based language implementation covers a
range in the design space of language semantics rather than
only a single point with one specific behavior. Application
programmers can use the MOP to create new variant lan-
guages that meet application-specific requirements by using
standard object-oriented techniques. Thus, the distinction
between language designers and users is blurred.

2.2 Groovy
Groovy [18, 32] is a pure object-oriented scripting lan-

guage that nicely integrates with Java [17]. Besides a meta-
object protocol, Groovy provides attractive language features,
such as class reloading and closures as first-class entities.

As shown in the lower half of Fig. 1 every value is an in-
stance of the class Object which implements the interface
GroovyObject. The meta-level is shown in the upper half of
Fig. 1. Method calls and field accesses on an object are han-
dled by a corresponding meta-object, which is an instance of
MetaClassImpl that implements the interface MetaObject-

Protocol. The latter declares meta-methods used for inter-
preting an object’s behavior, e.g., invokeMethod, getProp-
erty, setProperty, etc.

When a base-level method is called on an object, the meta-
method invokeMethod is called on the object’s meta-object.
The default implementation of invokeMethod in MetaClass-

52

http://www.stg.tu-darmstadt.de/popart
http://www.stg.tu-darmstadt.de/popart

Impl dispatches the base-level method call to the most spe-
cific implementation defined in the object’s class or in one of
its super classes. In a similar way, the meta-methods get-

Property and setProperty dispatch field accesses to the
most specific instance field2.

The user can specialize MetaClassImpl and override spe-
cific meta-methods. Every class has a link to its default
meta-object. When a class is instantiated, the default meta-
object is used for the created instance. One can change the
default meta-object defined for a class in the registry, thus
changing the semantics of all objects of that class. Alterna-
tively, one can change the meta-object of a single object by
calling the method setMetaClass on it.

Special values may be associated with specific meta-ob-
jects. For instance, a special meta-class is provided for clo-
sures, which are objects of the class Closure. Closures en-
capsulate their own evaluation context, which consists of
bindings from the lexical context, i.e., instance variables of
their creating object (owner), and local variables. Hence,
closures cannot use the default MetaClassImpl, which would
dispatch method calls and field/variable accesses to this

– the closure itself that does not define them. The spe-
cial ClosureMetaClass dispatches method calls as well as
field/variable accesses inside the closure to its context. More-
over, every closure can have a delegate object. If the lat-
ter is not null, method calls and field/variable accesses are
dispatched to it. This allows to manipulate the evaluation
context of a closure after the closure is created.

3. POPART META-ASPECT PROTOCOL
POPART programs consisting of classes and aspects are

written in Groovy closures. The POPART runtime is em-
bedded as an extensible library in Groovy. Further, the
Groovy MOP is extended to realize the meta-protocol of
the aspect language implemented by the POPART runtime;
this extension is called meta-aspect protocol (MAP) in the
following.

3.1 High-Level View of POPART
Our motivation for designing a meta-aspect protocol is to

achieve the same extensibility and flexibility in customiz-
ing aspect semantics that meta-object protocols provide for
objects. Consequently, we lean the definition of the MAP
against the definition of the MOP and define a meta-aspect
protocol as an interface to the aspect language that gives
users the ability to incrementally modify behavior and im-
plementation of aspect-oriented abstractions.

Fig. 2 shows the overall architecture of an aspect runtime
with a meta-aspect protocol built on top of the MOP. Such
a runtime provides two kinds of interfaces to programs, a
primary interface and a meta-interface.

The primary interface defines aspect language abstrac-
tions. The primary interface of the default POPART im-
plementation is similar to that of AspectJ [25]. POPART
supports before, around, and after advice with common se-
mantics. Pointcut designators such as method_call(regExp3),
method_execution(regExp), advice_execution(), not(pc4),

2If an accessed field is not present, the MOP tries to find a
corresponding getter or setter method by convention.
3A regular expression that should match the method name.
4 pc is another pointcut expression.

Figure 2: Architecture of POPART

cflow(pc), cflowbelow(pc), and if(boolClosure5) are sup-
ported. Advice bodies can access context information avail-
able for a certain join point type: thisJoinPoint, this-

Aspect, thisObject, and targetObject.
The meta-interface opens parts of the language imple-

mentation; it can be used by programs to create and use
specialized semantics of the abstraction exposed by the pri-
mary interface. POPART’s meta-interface consists of two
building blocks: While the MOP provides a meta-interface
to the the object-oriented semantics, the MAP provides a
meta-interface to the aspect-oriented semantics. Applica-
tion programmers can refine MAP classes to implement spe-
cialized aspect semantics and instances of the refined MAP
classes can replace the POPART’s (default) meta-level enti-
ties. Thereby, a POPART program can dynamically change
the language semantics, e.g., in order to add run-time debug-
ging support, or to activate an application specific ordering
strategy for aspects that co-advise certain join points.

For illustration consider the example in Fig. 3. The aspect
definition (lines 6–12) uses abstractions from the primary
interface (keywords in bold). In line 21, the (default) meta-
aspect associated with aspect is replaced with a specialized
meta-aspect that debugs pointcuts and their subexpressions.
During a pointcut’s evaluation, the specialized meta-aspect
prints the result of the evaluation in a tree structure on the
console as shown in Fig. 4.

As demonstrated by the code in Fig. 3, the border between
implementing application and language semantics is blurred
in POPART. Also, there is no gap between the technology
used to implement applications and language semantics. In
the example presented here and those following in the rest of
the paper, only object technology is used for implementing
and customizing the language semantics. However, in prin-
ciple, aspects can also be employed to adapt the meta-level
classes. The choice is rather a matter of design decisions
about the kind of modularity best suited for implementing
particular language implementation concerns.

3.2 Aspects, Pointcuts, Advice, Join Points
At run-time, POPART represents AO program elements

as data at the meta-level. The behavior of meta-entities such
as aspects, pointcuts, join points, etc., is modeled in desig-
nated classes, shown as shadowed boxes in the right lower
corner of Fig. 5. Each Aspect has one or several Pointcut-

5boolClosure is a closure that must evaluate to boolean.

53

1 class X {
2 void foo() { ... }
3 void baz() { foo(); }
4 }
5

6 aspect(name:”ToyAspect”) {
7 Pointcut pc =
8 method call(”foo.∗”) &
9 not(cflow(method call(”bar.∗”)));

10

11 before (pc) { println ”foo() called outside of bar ().”; }
12 }
13 ...
14 // Code runs with default semantics
15 X x = new X();
16 x.baz(); // prints ”foo() called outside of bar().”
17 ...
18

19 AspectManager am = AspectManager.getInstance();
20 Aspect aspect = am.getAspect(”ToyAspect”);
21 aspect.metaAspect = new DebugMetaAspect(aspect.class);
22 ...
23 // Code runs with specialized semantics.
24 // Also prints information about pointcut evaluation process.
25 x.baz();

Figure 3: A POPART Program

1 Fired join point at shadow ’Main.foo()’ Evaluation:
2 match ’and (method call(foo.∗),not(cflow(method call(bar.∗)))) ’
3 \−left = match ’method call (’foo.∗’) ’
4 \−right = match ’not (cflow (method call(’bar.∗ ’))) ’
5 \−no match ’cflow (method call(’bar.∗ ’)) ’ Stack ...
6 \−Stack[1] no match at exec shadow ’Main.main(...)’
7 \−Stack[2] no match at call shadow ’Main.baz()’
8 \−Stack[3] ...

Figure 4: Debugging View for Pointcut Evaluation

AndAdvice objects each associating a Pointcut object with
an advice (the latter are modeled as Groovy closures).

3.2.1 Aspects
As any Groovy object, an Aspect instance has a meta-

object. However, meta-objects associated with aspects are
of type MetaAspect, a specialization of Groovy’s MOP with
aspect-specific functionality; in the following, these special-
ized meta-objects are called meta-aspects. MetaAspect ex-
poses well-defined points in the interpretation of aspects,
reflected in the interface of meta-aspects defined in Meta-

AspectProtocol, shown in Fig. 6. MetaAspectProtocol de-
clares several meta-methods, one for each point in the in-
terpretation of aspects that is open to specialization. The
class MetaAspect implements the meta-methods, defining a
default semantic for aspect interpretation.

There are several meta-methods modeling the join point
reception semantics, one per each advice type (Fig. 6, lines 4–
9). The default implementation of these meta-methods in
MetaAspect finds advice whose pointcuts match the received
join point and adds the corresponding PointcutAndAdvice

to the list applicablePAs. Another group of meta-methods
(lines 12–17) is concerned with the evaluation of pointcuts in
the workflow triggered by the reception of join points. Meta-
methods for join point reception internally call matchPoint-
cut that defines the semantics of evaluating a single point-
cut. Methods matchedPointcut and notMatchedPointcut

getName()
getPointcutAndAdvice()

Aspect

match(jp:JoinPoint)

Pointcut

call()

<<advice>>
Closure

*

loads

PointcutAnd-
Advice

getAspect(name)
register(aspect)
unregister(aspect)

AspectManager

<<meta-object>>
MetaAspect

<<meta-object>>
MetaClassImpl

Debug-
MetaAspect

<<interface>>
MetaAspect-
Protocol

<<interface>>
MetaObject-
Protocol

*

1

<<meta-object link>>

context : HashMap

JoinPoint matches

Instrumentation-
Module

reifies

fires
join points

<<meta-object>>
Meta-

AspectManager

*

1

<<meta-object link>>

<<interface>>
MetaAspect-

ManagerProtocol G
ro

ov
y

M
O

P

...

Figure 5: Overview of POPART’s MAP

1 interface MetaAspectProtocol {
2

3 // join point reception semantics
4 void receiveBefore(Aspect aspect, JoinPoint jp,
5 List applicablePAs);
6 boolean receiveAround(Aspect aspect, JoinPoint jp,
7 List applicablePAs);
8 void receiveAfter(Aspect aspect, JoinPoint jp,
9 List applicablePAs);

10

11 // pointcut matching semantics
12 boolean matchPointcut(Aspect aspect, JoinPoint jp,
13 Pointcut pc);
14 void matchedPointcut(Aspect aspect, JoinPoint jp,
15 PointcutAndAdvice pa);
16 void notMatchedPointcut(Aspect aspect, JoinPoint jp,
17 PointcutAndAdvice pa);
18

19 // aspect interaction semantics
20 void interactionAtJoinPoint(Aspect aspect, JoinPoint jp,
21 Set aspects, List applicablePAs);
22 }

Figure 6: The MetaAspect Interface

are called whenever a pointcut matches, respectively does
not match. Finally, interactionAtJoinPoint exposes as-
pect interaction semantics; whenever several aspects apply
at a join point, this method is called on each of them.

The meta-link from an aspect to its meta-aspect plays an
important role for the flexibility of our architecture. When
adjusting an aspect’s meta-link at run-time, i.e., exchanging
the meta-aspect, other semantics will be used for that as-
pect instance (e.g., debugging support or customized advice
ordering). By default, aspects share the same default meta-
aspect instance, but each aspect instance may have its own
special meta-aspect instance.

3.2.2 Pointcuts and Join Points
Pointcuts are represented by the subclasses of the abstract

class Pointcut. For each designator in the primary interface,
there is a corresponding subclass of Pointcut, e.g., for the
method_call designator, there is the subclass class Method-

54

1 public aspect MethodCallInstrumentation {
2 Object around () : call(∗ ∗.∗(..)) && !inExcludedShadows() {
3 AspectManager am = AspectManager.getInstance()
4 MetaAspectManager mam = am.getMetaAspectManager();
5 HashMap context = new HashMap();
6 context.put(”method”, thisJoinPoint.getMethodName());
7 context.put(”args”, thisJoinPoint.getArgs());
8 context.put(”targetObject”, thisJoinPoint.getTarget());
9 ...

10 Proceed proceed = new Proceed() {
11 Object call(Object[] args) { return proceed(args);} };
12 context.put(”proceed”, proceed);
13 JoinPoint jp = new MethodCallJoinPoint(...,context);
14 context.put(”thisJoinPoint”, jp);
15

16 mam.fireJoinPointBeforeToAspects(jp);
17 mam.fireJoinPointAroundToAspects(jp);
18 mam.fireJoinPointAfterToAspects(jp);
19 return context.get(”result”);
20 } }

Figure 7: Instrumentation for Method Call JPs

CallPCD. Any pointcut implements the method match that
takes a JoinPoint object as a parameter; e.g., the imple-
mentation of this method in MethodCallPCD matches against
instances of MethodCallJoinPoint, testing whether the pat-
tern of the receiver pointcut object is satisfied.

Join points are represented by subclasses of JoinPoint.
For each join point type, a dedicated instrumentation mod-
ule – an AspectJ program in the current implementation –
instruments programs, such that objects of a corresponding
subclass of JoinPoint are created at the execution of cor-
responding shadows. For illustration, the snippet in Fig. 7
shows the hook code to be inserted at all shadows of method
call join points. The current implementation supports an
AspectJ-like join point model. Other join point models,
including domain-specific ones, can be accommodated by
adding new subclases of JoinPoint and by exchanging the
instrumentation modules.

3.3 Managing and Composing Aspects
Controlling aspect management and composition work-

flows is the responsibility of the aspect manager, the single
instance of the AspectManager class, and its meta-object,
an instance of MetaAspectManager. While the class Aspect-
Manager implements the fixed parts of the meta-aspect pro-
tocol responsible for aspect management and composition,
the MetaAspectManager can be dynamically exchanged and
allows run-time adaptation of management and composition
semantics.

Unlike the meta-methods declared in MetaAspectProtocol

that are responsible for the interpretation of individual as-
pect instances, the meta-methods of MetaAspectManager in-
terpret aspects at a more coarse-grained level, i.e., adapting
such a meta-method will change the interpretation of all as-
pects, and not only of one aspect. The role of the different
meta-methods of MetaAspectManager, shown in Fig. 8, will
be discussed in detail in the following sub-sub-sections.

3.3.1 From Aspect Programs to Meta-Level Entities
The aspect language supported by POPART is embed-

ded into Groovy by exploiting its flexible syntax, closures,
and its meta-object protocol. For an in depth-description of
embedding domain-specific languages in Groovy we refer to

1 public interface MetaAspectManagerProtocol {
2 void loadAspects() {...}
3 void loadAspect(String name) {...}
4 void startup() {...}
5 void finalize () {...}
6

7 void fireJoinPointBeforeToAspects(JoinPoint jp);
8 void fireJoinPointAroundToAspects(JoinPoint jp);
9 void fireJoinPointAfterToAspects(JoinPoint jp);

10

11 Set calculateAspectInteractionSet(List applicPAs);
12 void interactionAtJoinPoint(JoinPoint jp, Set aspects,
13 List applicPAs);
14

15 void invokeAllApplicPAs(JoinPoint jp, List applicPAs);
16 Object invokeAdvice(JoinPoint jp, PointcutAndAdvice pa);
17 }

Figure 8: The MetaAspectManager Interface

previous work [11]. Aspect modules are defined in Groovy
scripts that are compiled to Java bytecode [18]. The Meta-

AspectManager as part of the embedded POPART library is
responsible for loading such scripts into POPART (methods
loadAspects() and loadAspect(String) in Fig. 8, lines 2
and 3), thereby creating a graph of instances of the meta-
level classes, which can than be executed. Fig. 9 shows the
workflow for loading aspect scripts.

First, the method loadAspect() encloses each aspect into
a Groovy Closure whose delegate field is set to be the Meta-

AspectManager instance (cf. Sec. 2.2). Besides the meta-
methods of in Fig. 8, MetaAspectManager also implements
the primary interface, in that it defines a method for each
keyword used in aspect scripts, e.g., aspect, method_call),
before, etc. Second, the created closure is called which
starts the evaluation of the enclosed aspect script. When
encountering an aspect keyword in the closure, the Groovy
MOP maps it to a corresponding method call dispatched
to the MetaAspectManager delegate. For example, the key-
word aspect is mapped to a call to method aspect on the
MetaAspectManager delegate, which creates a new instance
of Aspect. Out of the pointcut designator keywords, a
structure of meta-entities of type Pointcut is created (in-
teractions inside the dashed box in Fig. 9). The before

keyword will call the corresponding method that adds a
BeforePointcutAndAdvice object to the created Aspect ob-
ject, which refers to the pointcut hierarchy and the advice
closure. Finally, the loaded Aspect is registered with the
AspectManager.

To summarize, the result of loading an aspect is a graph of
POPART meta-level instances. For illustration, the meta-
level representation of the ToyAspect from the example pro-
gram in Fig. 3 is shown in Fig. 10. Initially, the Aspect

instance for ToyAspect is associated with a default Meta-

Aspect instance (index 1). During the run of the program
(from Fig. 3), the meta-object-link of the ToyAspect instance
is changed from the default MetaAspect to the DebugMeta-

Aspect (index 2).
After loading all aspects, a call to the startup method

(Fig. 8, line 4) on the MetaAspectManager instance com-
pletes the initialization of POPART and the execution of
the program is started. Once the program’s execution is
completed, finalize (line 5) will be called.

55

Aspect-
Manager Closure

loadAspectDefinitions()

<<delegate>>
Meta-
Aspect-
Manager

aspect(…)

Aspect

method_call(“foo*“)

MethodCall-
PCD

method_call(“bar*“)

MethodCall-
PCD

not(subexpr2)

NotPCD

subexpr2

subexpr1

subexpr3

&(subexpr1,subexpr3)

AndPCDpc

before(pc,adviceClosure)

Before-
Pointcut-
AndAdvice

loadAspect(“ToyAspect“)

Figure 9: Sequence of Loading an Aspect

ToyAspect:Aspect

pc:Pointcut
:BeforePointcut-

AndAdvice adviceClosure:
Closure

:MetaAspect :DebugMetaAspect

<<meta-object link>>

Intercepts
pointcut
evaluation

1 2

Figure 10: The Meta-Level of ToyAspect

3.3.2 Composing Aspects at Run-Time
The overall semantics of aspect composition is determined

by the interaction of the meta-aspects and the MetaAspect-

Manager. Aspect composition happens at run-time (after
programs are instrumented to fire join point events and as-
pects are loaded) and follows an open abstract aspect compo-
sition process [30] that consists of four steps: reify, match,
order, and mix.

In step reify program execution is intercepted at at each
join point shadow. The hook code inserted by the instru-
mentation extracts the join point context and fires a new
JoinPoint instance to the MetaAspectManager, which, in
turn, passes it to the MetaAspect instance of each loaded
aspect, thus entering the match step.

In step match, each Aspect’s MetaAspect determines what
pointcuts match the current join point by passing it to the
match method of each Pointcut instance referred to by the
aspect. The result of this step is a list of advice to execute.

In step order, the lists of applicable advice retrieved from
all aspects in the previous step are merged into one list by
the MetaAspectManager, thereby determining the advice ex-
ecution order. The default semantic implemented in Meta-

AspectManager is to order advice according to the sequence
in which the advice and their declaring aspects have been
loaded.

Finally, in step mix, the execution of program actions and
advice is mixed by executing each advice in the order of the
list resulting the order step. For before and after, all advice
Closures are called in sequence. For around, a special Pro-
ceed closure is used for wrapping multiple advice around a
join point. Whenever proceed is called, the Proceed closure
executes the next advice in the list of applicable advice.
After all around advice have been called, the next call to
proceed will execute the join point action.

3.4 Variation Points in POPART
POPART provides three main variation points (denoted

VP1, VP2, and VP3 below) that have been selected to allow
semantic variations found in the literature. One can extend
POPART by defining subclasses of meta-entities (VP1), by
defining subclasses of MetaAspect (VP2), and of MetaAspect-
Manager (VP3), and setting up abstract factories [15]. In the
following, we briefly mention possible extensions that could
be provided with the current variation points. More elabo-
rated scenarios will be given in the following section.

Users may specialize and extend all meta-level entities
(VP1). One can e.g., create a subclass of Aspect to sup-
port dynamic activation, or to enable fine-grained scoping
of aspects. Domain-specific join point models (JPM) [47]
can be provided by subclassing JoinPoint and by imple-
menting new instrumentation modules. For new join point
types, new primitive pointcut designators can be provided
by subclassing Pointcut. New abstract and higher-order
designators can also be added.

The MetaAspect can be specialized by overriding its meta-
methods (VP2). For example, by overriding matchPointcut,
we can intercept pointcut evaluation for debugging or opti-
mize pointcut matching using partial evaluation. To record
online execution analysis, one may override matchedPointcut
and notMatchedPointcut to count matching pointcuts. The
method interactionAtJoinPoint can be overridden in or-
der to refine the resolution strategy.

56

Meta-methods of MetaAspectManager (VP3) can be over-
ridden to change the management and the composition se-
mantics. One can adapt the reify step, e.g., by adding new
meta-methods to receive join points of an alternative JPM,
such as, the point-in-time JPM [35]. In step match, the
evaluation of pointcuts can be adapted, e.g., to provide de-
bugging support. The detection of aspect interactions and
their resolution can be adapted in step order ; we will show
example scenarios for this in the next section. The step mix
can be specialized to change the application of advice, e.g.,
to profile advice execution times or to support concurrent
advice.

The inversion of control [14] enabled by callbacks to meta-
methods in the control flow of the default implementation
of the aspect semantics allows plug-ins comprising semantic
specializations to be provided as user extensions. POPART
has a fine-grained aspect meta-model in which the core as-
pect-oriented programming concepts are well isolated from
each other. This allows to substitute them separately with-
out affecting other parts of the implementation. For exam-
ple, when changing the semantics of one pointcut designator,
another pointcut designator’s implementation should not be
affected and the default implementation of aspect composi-
tion should not be invalidated.

Last but not least, semantic customizations can be applied
dynamically by changing meta-object-links to meta-aspects
or to the meta-aspect-manager. For example, as indicated in
Fig. 10, during the run of the example program from Fig. 3,
the meta-object-link of the ToyAspect instance is changed
from the default MetaAspect (index 1) to the DebugMeta-

Aspect (index 2). As a result, in step match, the Meta-

AspectManager will use the DebugMetaAspect for pointcut
evaluation, which enables debugging for its pointcuts.

4. CREATING VARIANT LANGUAGES
In this section, we present scenarios of using the meta-level

of POPART to specialize or extend the language semantics.
First, a specialization of language semantics is realized by
exchanging the meta-aspect of individual aspects to support
debugging. Next, the part of the MAP concerned with as-
pect composition semantics is specialized to implement spe-
cific ordering strategies for co-advising aspects. Finally, the
MAP is used to extend the primary interface.

4.1 Adding Pointcut Debugging Support
Although adequate support for debugging is crucial for

the adoption of AOP, many AO languages lack such sup-
port. Especially, no adequate support for debugging point-
cut evaluation down to the level of subexpressions and for
debugging residual pointcuts is available. For performance
reasons, many AO approaches perform static weaving, they
partially evaluate pointcuts before run-time. But, since AO
concepts lose their first-class status after static weaving, de-
bugging is hindered [13].

In this section, we present a specialization of the default
AO semantics realized by POPART to support debugging
of pointcuts – in particular, pointcuts that cannot be fully
evaluated statically – whereby all parts of the default seman-
tics that are not affected by debugging are reused. MOPs
have been used to support debugging of object-oriented pro-
grams; they allow visual debuggers to be implemented [27]
and to be combined with program analysis. Similarly, our

1 public class DebugMetaAspect extends MetaAspect {
2 boolean matchPointcut(aspect, jp, pc) {
3 boolean result = super.matchPointcut(aspect, jp, pc);
4 println ”#Debug breakpoint at ’$jp’”;
5 println ”#Pointcut under inspection = ’${pc}’”;
6 println ”#It matches ” + (result? ”yes” : ”no”);
7 print ”#Please select :(1)step over ,(2)step into , ...>”;
8 String input = System.in.readLine();
9 ... // handle input option

10 return result;
11 } }

Figure 11: A Meta-Aspect for Debugging

MAP can be used to extend aspect composition semantics
with debugging support for pointcuts.

A specialized meta-aspect class, called DebugMetaAspect,
is shown in Fig. 11. It reuses aspect execution semantics by
inheriting the default implementation of MetaAspect and
overrides the matchPointcut meta-method to add interac-
tive access to the pointcut evaluation for debugging via the
console (lines 4–9). A visual object inspector similar to in-
spectors in Smalltalk [16] has also been developed on top
of the MAP. This inspector allows to introspect the run-
time state of meta-level entities, such as the current join
point with the program context, the current pointcut, and
the current aspect and meta-aspect. For brevity, only the
console-based debugger is elaborated here.

When a pointcut is evaluated by a DebugMetaAspect, i.e.,
the method matchPointcut is called, the program execution
is paused and the user is presented context information ac-
cessed by introspecting the reified meta-entities’ state. For
example, the current join point, the pointcut expression
matched against, and the result of the match are displayed.
Next, the user can interactively select (in Fig. 11, line 8)
from a list of options. These options allow the user to spec-
ify the granularity at which the evaluation is traced, e.g.,
step over or step into functionality. Further, the user may
also change the result of the evaluation, e.g., by forcing the
subexpression to match or not to match.

The above debugging support can be used for an aspect
by replacing the default meta-aspect with an instance of
DebugMetaAspect. Recall that we have already seen such a
scenario in the example in Fig. 3, line 21. When reaching
line 24 in Fig. 3 with our interactive debugging support in
place, the user can select an option to step into the pointcut.
As effect, the tree structure of the pointcut evaluation is
displayed as shown in Fig. 4 from Sec. 3.

Note that the example program in Fig. 3 defines a bro-
ken pointcut (lines 7–9). The pointcut still refers to the old
method name bar() that was renamed to baz() (line 3).
Such errors in pointcuts whose partial evaluation produces
residuals, e.g., errors in cflow subexpressions, (also called
residual pointcuts in the following) are hard to find because
most existing debugging support only helps to find errors
in parts of pointcuts that can be statically analyzed. The
debugging support implemented with the MAP can be used
to trace errors in residual pointcuts. Consider again the tree
structure in Fig. 4 that shows details of the broken pointcut’s
evaluation at run-time; a join point is fired that matches,
but that is not expected to match against the pointcut (e.g.,
foo() is called in baz()). The user can trace the bug in the
tree structure by following the evaluation of subexpressions

57

as highlighted in bold. The user notices that the evaluation
of subexpression not(cflow(method_call("bar.*"))) (in
line 7) matches unexpectedly because the renamed method
baz() is on stack.

Adding debugging support is only one example of a lan-
guage specialization that can be realized by attaching spe-
cialized meta-aspects to individual aspect instances. Other
specializations can be realized in a similar way. For exam-
ple, we have implemented specializations for online execu-
tion analyses that profile the execution times of advice, or
automatically detect co-advising aspect interactions [34].

4.2 Customizing Aspect Composition
The specialization presented so far has adapted the be-

havior of single aspects. Another form of specialization is
to adapt the interplay of aspects realized by the steps in
the composition process, e.g., to customize advice ordering
semantics. In Sec. 4.2.1, the MAP is used to implement an
extensible advice ordering mechanism, which can be adapted
at run-time to resolve context-dependent aspect interactions
[41]. In Sec. 4.2.2, we discuss an example scenario from the
telecommunication domain, in which dynamic aspect inter-
action occurs, that can be resolved using the presented ex-
tension.

4.2.1 Customizing Advice Ordering
Many aspect-oriented languages and systems do not ade-

quately manage aspect interactions [12]. An important type
of aspect interaction occurs where multiple pointcuts match
a given join point [12, 7, 44, 34], thus several pieces of advice
will co-advise [34] the shared join point6. If advice are not
executed in the right order, co-advising may lead to con-
flicts. Different conflict resolution approaches [12, 7, 37, 46]
and language extensions for specifying advice execution or-
der have been proposed. Also aspect interactions have been
found to be domain-specific [31, 19]. This suggests that
there possibly is no general ideal solution for aspect inter-
action, therefore extensible advice ordering mechanisms and
conflict resolution strategies [46, 31] are needed.

In Fig. 12, a specialized meta-aspect-manager class, called
OrderedMetaAspectManager, is shown; it specializes the or-
der step in the abstract aspect composition process to order
advice in case of aspect interactions right before executing
them, hence, resolving co-advising interactions. Ordered-

MetaAspectManager inherits the aspect composition seman-
tics from MetaAspectManager and overrides the interaction-
AtJoinPoint meta-method. Recall that in the default imple-
mentation of the MAP, this meta-method is called whenever
more than one pointcut-and-advice is found to be applicable
at a join point during the match step.

The overridden meta-method uses the standard sort op-
eration provided by the Java Collection Framework passing
to it the set of advice to order and a comparator, which is
delivered by a factory object (line 6). The implementation
of interactionAtJoinPoint in OrderedMetaAspectManager

is a template for ordering strategies. By using the factory
pattern to retrieve the comparator, this method introduces
a new variation point that allows further adaptations to pro-
vide customized (application-specific) advice ordering. New
ordering strategies can be implemented by providing a new

6Interactions other than co-advising [31] are out of scope of
this paper and will be addressed in the future.

1 class OrderedMetaAspectManager
2 extends MetaAspectManager {
3 ...
4 void interactionAtJoinPoint(jp, aspects, applicablePAs) {
5 super.interactionAtJoinPoint(jp, aspects, applicablePAs);
6 Comparator comparator = AspectFactory.getComparator();
7 Collections . sort(applicablePAs, comparator);
8 }
9 }

Figure 12: Ordered Advice Executions

implementation of Comparator. Because we acquire a Com-

parator via the factory the ordering strategy can be re-
placed at run-time.

Based on the template for advice ordering strategies, we
have implemented several reusable advice ordering strate-
gies as variations of the ordered meta-aspect-manager. An
intuitive semantics of advice ordering is based on priorities.
In this implementation the class Aspect is extended with
a field priority and a Comparator is provided that orders
pointcut-and-advice according to the priority value of their
aspects. Another strategy is rule-based and allows to define
precedence rules at the level of pointcut-and-advice. An
advice-type-specific strategy uses different ordering strate-
gies for before, around, and after advice. A generic com-
binator strategy allows to combine different strategies, e.g.,
to automatically apply the priority-based strategy, whenever
the rule-based strategy does not define a specific order. In
the following, we discuss how we can use the ordering mech-
anism to implement a strategy, where the order to choose
depends on the application state.

4.2.2 Resolving Context-Dependent
Aspect Interactions

An challenging kind of aspect interactions are those whose
emergence depends on the dynamic state of a program [41,
12, 37, 38, 34, 28]. For illustration, consider the two aspects
in Fig. 13 that implement two features of a phone manage-
ment system [23, 37]: (a) the call forwarding supplementary
service feature initiates call transfers to other phones, if the
calls are not answered, and (b) the answering machine for-
warding feature.

Both Alice and Bob have a Phone (line 16 and 17) and each
phone has an AnswerMachine (line 3) which can be activated
(line 9). In lines 20–29, the aspect Alice_To_AM4Alice is
defined that forwards Alice’s received calls to her answer
machine, if the call is not answered and the answer ma-
chine is active. Note that the aspect’s parameter perIn-

stance:alice defines the aspect to be instance-local7, so
that only calls on the phone alice will be advised. An-
other aspect, Alice_To_Bob (lines 31–38), forwards Alice’s
un-answered calls to her forwardPhone, which is set to the
Phone bob (line 18). Finally, Bob_To_AM4Bob (lines 40–43),
forwards Bob’s un-answered calls to his answer machine.

Alice prefers that calls are answered by her colleague Bob,
if the latter is available. Hence, in first sight the desired
ordering strategy seems to be that Alice_To_Bob is given
higher priority than Alice_To_AM4Alice. However, with the

7POPART’s support for dynamic AOP is discussed in
Sec. 4.3. This includes dynamic deployment and instance-
local deployment, similar to existing approaches [10, 39, 42].

58

1 class Phone { //Phone.java
2 boolean receiveCall(String phoneNumber) {...}
3 AnswerMachine getAnswerMachine() {...}
4 Phone getForwardPhone() {...}
5 void setForwardPhone(Phone forwardTo) {...}
6 }
7

8 class AnswerMachine extends Phone { //AnswerMachine.java
9 boolean active = false;

10 boolean receiveCall(String phoneNumber) {
11 ...
12 return active;
13 } }
14

15 //Remaining lines in POPART
16 Phone alice = new Phone(”Alice”);
17 Phone bob = new Phone(”Bob”);
18 alice .setForwardPhone(bob);
19

20 aspect(name:”Alice To AM4Alice”,
21 perInstance: alice) {
22 around(method execution(”receiveCall.∗”)) {
23 boolean answered = proceed();
24 AnswerMachine am = targetObject.getAnswerMachine();
25 if (!answered && am.active) {
26 answered = am.receiveCall(args[0]);}
27 }
28 return answered;
29 } } };
30

31 aspect(name:”Alice To Bob”,
32 perInstance: alice) {
33 around(method execution(”receiveCall.∗”)) {
34 boolean answered = proceed();
35 Phone bob = targetObject.getForwardPhone();
36 if (!answered) {answered = bob.receiveCall(args[0]);}
37 return answered;
38 } } };
39

40 aspect(name:”Bob To AM4Bob”,
41 perInstance:bob) {
42 // similar to the aspect Alice To AM4Alice
43 };
44

45 alice . receiveCall(”+1−555−444−3333”);
46 ...

Figure 13: A Phone Management System

Alice_To_Bob-before-Alice_To_AM4Alice strategy in place,
the following undesired scenario may happen, if Bob has ac-
tivated his answer machine. Alice does not answer a call,
and Alice_To_Bob forwards it to Bob. Next, Bob also does
not answer, and Bob_To_AM4Bob will forward the call to
Bob’s answer machine. Obviously Alice prefers that calls
are recorded on her own answer machine instead of the an-
swer machine of someone else.

So, what is the right order for executing the co-advising
aspects Alice_To_Bob and Alice_To_AM4Alice? As a mat-
ter of fact, any static ordering, e.g., based on priorities, will
possibly be wrong, as the right order of advice depends on a
dynamic condition, namely whether Bob’s answer machine
is active or not. An advice order strategy is required that
takes into account the dynamic context of the application,
in this case, the activation status of Bob’s answer machine.

Our meta-aspect protocol can be used to implement and
activate an advice execution order strategy that takes into
account dynamic context information by using the reflective
access provided by the MAP. The PhoneForwardComparator

in Fig. 14 is tailored for solving the conflict in the above
example, defining an advice ordering mechanism that takes

1 class PhoneForwardComparator<T extends PointcutAndAdvice>
2 implements Comparator<T> {
3 int compare(T pa1, T pa2) {
4 if (pa1.aspect.name.equals(”Alice To Bob”) &&
5 pa2.aspect.name.equals(”Alice To AM4Alice”)) {
6 Phone fromPhone = thisJoinPoint[”targetObject”];
7 Phone toPhone = fromPhone.getForwardPhone();
8 if (toPhone.getAnswerMachine().active) {
9 return LOWER PRECEDENCE;

10 else
11 return HIGHER PRECEDENCE;
12 } else {
13 return AspectFactory.getDefaultCmp().compare(pa1,pa2);
14 } } }

Figure 14: Dynamic Advice Ordering

into account the state of the interacting aspects at a join
point. If the two interacting pointcut-and-advice stem from
aspects Alice_To_AM4Alice and Alice_To_Bob (lines 4–5),
the advice defined in Alice_To_Bob gets a higher precedence
if and only if Bob’s answer machine is turned off (cf. line 8).
Otherwise, the advice of Alice_To_AM4Alice gets a higher
precedence. If the two pointcut-and-advice do not stem from
Alice_To_AM4Alice and Alice_To_Bob, the default priority-
based advice ordering is used.

The accessible application context on which a Comparator

may depend includes (a) the program state (e.g., objects,
stack), (b) the aspect context (e.g., aspects and all their
subcomponents), (c) the state of the composition mechanism
(e.g., aspect interaction set and all applicable pointcut-and-
advice at a join point), and (d) other external sources. Due
to this broad reflective access, the MAP of POPART could
be used for resolving other kinds of semantical interferences
[12, 46, 28, 41]. For instance, one can intercede the list
of applicable advice in order to enforce mutual exclusion
or implicit cuts [46], by removing or adding pointcut-and-
advice from the list.

4.3 Extending the Primary Interface
One may want to extend the primary interface to add a

new feature to the aspect language, e.g., dynamic aspect
deployment. For instance, in Fig. 15, a logging aspect is de-
fined. Unlike other POPART aspects seen so far, this aspect
has a new parameter deployed:false in line 1. As the re-
sult, the logging aspect is not immediately active after it is
loaded by the aspect manager. Next, the program is exe-
cuted three times. After the first run, the aspect is deployed
by calling the method deploy() on it. This method is not
provided by instances of Aspect, the default implementa-
tion of aspects in POPART. Subsequently, when executing
the program the second time the logging aspect will advise
the program. Next, the aspect is undeployed, again leaving
the program unadvised in the third run.

In this scenario, the application uses the additional aspect
abstractions: the deployed parameter in the aspect defini-
tion and the deploy/undeploy methods. To support these
additional abstractions, and hence to realize dynamic de-
ployment, we have implemented a class DynamicAspect that
extends Aspect and holds an instance field deployed indicat-
ing the deployment status of its instances. Calling deploy

on such an aspect instance will set the deployed field, hence
activating the aspect. In contrast, undeploy resets the field
and deactivates the aspect instance.

59

1 def a = aspect(name:”DynLogAspect”,deployed:false) {
2 before(method call(”.∗”)) {
3 println ”$thisObject calls $targetObject”;
4 } }
5 Program.main();
6 a.deploy();
7 Program.main();
8 a.undeploy();
9 Program.main();

Figure 15: A Dynamic Logging Aspect

1 class DynamicMetaAspect extends MetaAspect {
2 void receiveBefore(aspect,jp,applicablePAs) {
3 if (!((DynamicAspect)aspect).deployed) return; ...
4 super.receiveBefore(aspect,jp,applicablePAs);
5 }
6 ...
7 }

Figure 16: An Extension for Dynamic AOP

A dynamic aspect is composed by using the specialized
meta-aspect class DynamicMetaAspect. When join points are
fired to such a meta-aspect, it only matches pointcuts and
executes advice if the aspect instance is deployed. The meth-
ods receiveBefore, receiveAround, and receiveAfter are
all overridden in the same way. E.g., in Fig. 16 line 3, a dy-
namic condition checks whether deployed is true. In this
case, DynamicMetaAspect forwards to the corresponding su-

per method in MetaAspect, which composes the aspect. In
contrast, the aspect is not composed if the condition eval-
uates to false. It is worth mentioning that, in addition
to this global-scoped deployment mechanism, DynamicAspect
also provides means for instance-scoped and class-scoped de-
ployment similar to Steamloom [42] and CaesarJ [10].

To summarize, the MAP allowed us to implement dy-
namic activation strategies for aspects in a modular way.
The extension changed the primary aspect interface, since
new parameters are used in the aspect definitions and ad-
ditional methods for deployment are provided. Examples
of other kinds of extensions to the primary interface that
could be realized by means of the MAP are the definition of
new (domain-specific) join points and new (domain-specific)
pointcut designators by adding new keywords to the primary
interface under which aspects are evaluated (cf. Sec. 3.3.1).
For example, we have implemented a domain-specific join
point model for a workflow-oriented language; extending
POPART with join points and pointcut designators for field
access is another example extension.

5. RELATED WORK
The variation points in the design-space of POPART have

been inspired from semantic variations of AO concepts found
in related work.

The specialization for supporting dynamic AOP presented
in Sec. 4.3 bears similarity to corresponding concepts in other
systems with built-in support for dynamic AOP [10, 39, 42].
Unlike POPART, the language constructs for dynamic AOP
and their respective semantics is fixed into the implementa-
tions of these systems. Further, none of these approaches

provides a general solution to application-level customiza-
tion of several parts of language semantics.

The advice order mechanism presented in Sec. 4.2.1 con-
siders results of [44, 46, 28, 34, 19]. An instance for appli-
cation-level semantic adaptations in AO solutions are cus-
tomizable resolutions of aspect interactions, that change the
composition semantics of aspects. Several approaches have
been proposed, such as logical meta-programming [7], spe-
cial composition modules that allow to specify logic to order
advice [44], as well as providing rules to explicitly order,
include, and exclude advice [45, 46].

These approaches support to a certain degree the cus-
tomization of aspect interaction semantics, however, con-
flict resolution is not the only semantical variation in aspect
languages. Moreover there are two major problems with
the above approaches. First, the advice ordering strategies
cannot dynamically be changed based on dynamic context.
Second, there is a technology break between the way as-
pects are specified and how conflicts are resolved. On the
contrary, our approach allows to specify aspects and their
resolution logic – as well as other semantic variations – in
the same language by either using the primary interface or
the meta-interface. Moreover, the MAP allows the user to
define a resolution strategy for context-dependent aspect in-
teractions.

Extensible aspect-oriented language infrastructures [44,
45, 2, 46, 31] allow semantics to be adapted when build-
ing a special compiler or a special runtime. To the best
of our knowledge, none of these systems support adapta-
tions at run-time by users at the application-level. The abc
compiler is often used for defining new kinds of pointcuts
[2] as extensions of AspectJ. The Aspect SandBox (ASB)
supports prototyping alternative AOP semantics and im-
plementation techniques [36], e.g., new kinds of pointcut
designators and alternative weaving techniques. However,
providing new concepts and semantics results in excessive
changes throughout the interpreter, e.g., when a new type
of join point is added [47]. This is because ASB does not
provide clear interfaces for controlling the underlying im-
plementation strategy. There is no meta-interface available
to programmers for tailoring AO semantics at the applica-
tion level. In contrast to the extensible AO solutions above,
POPART allows the adaptation of semantics at run-time
by providing a meta-interface that can be extended using
well-known object-oriented techniques.

Reflex [45, 46], JAMI [19], MetaSpin [8], and FIAL [6] are
aspect-oriented runtimes that employ aspect-oriented meta-
models that are open for alternative AO semantics when the
run-time is build. In their meta-models, interfaces for AO
abstractions are provided that can be extended, e.g., with
new pointcut designators or composition strategies. The
four approaches differ in their objectives and implementa-
tion techniques which are, however, not relevant for a com-
parison to our approach. In general, they do not support
changing the AO semantics at run-time.

Reflection and MOPs have been used to implement AOP
technology by adapting the semantics of objects. This ap-
proach has been followed by Sullivan [43], AspectS [20, 21],
Lorenz and Kojarski [33, 29], Composition Filters [3, 4],
Tanter [45], AspectLua [9], Aquarium [48], and GroovyAOP
[22]. However none of the MOP-based solutions comes with
a well-designed meta-aspect protocol to complement MOPs
with a meta-interface that allows programmers to adapt the

60

semantics of aspects. Moreover, adapting the semantics of
aspect composition both at the application-level and at run-
time has not been in the focus.

Kojarski and Lorenz [33, 29] analyze the relation of reflec-
tion and AOP and argue that AOP is a first-class compu-
tational reflection mechanism and therefore is at the same
level as reflection. In this work, we have presented the MAP
at the same level as the MOP.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an architecture for a meta-

aspect protocol that enables application developers to adapt
the semantics of the aspect language at run-time. The ben-
efits of the proposed architecture were demonstrated by de-
riving several aspect-oriented variant languages.

We conclude the paper by discussing in what extent the
proposed architecture meets the following requirements for
the design and implementation of a MOP defined by Kiczales
et al. [27], which also apply to a meta-aspect protocol.

1. Robustness. Altering one part of the protocol should
not affect other parts of the MOP implementation.

2. Abstraction. The user does not need to know the de-
tails of the language implementation.

3. Ease of use. The change of the default implementation
should be natural and straight forward.

4. Efficiency. The flexibility of the MOP should not un-
dermine the performance of the default language.

The first requirement is met to a large extent due to
the fine-granularity of the meta-model underlying our MAP,
where each AO concept is represented by a designated meta-
level entity. Yet, further empirical assessment of the ex-
pressiveness of the architecture in general and of the meta-
interface in particular needs to be conducted. Future work
needs to explore the ability of our MAP to support an ap-
plication-level implementation of further AO language fea-
tures. For instance, we plan to explore in how far and with
which benefits a security infrastructure designed for AOP
could be provided on top of our meta-aspect protocol.

The second requirementis met because the meta-interface
is an abstraction of the language implementation. Due to
the integration of our MAP into Groovy’s MOP and due to
the implementation of POPART as an embedded language,
changing the language semantics is as easy as changing des-
ignated fields of objects; hence, the third requirement is also
met.

While this paper focuses on the flexibility provided by
MAP, efficiency and performance issues related to the fourth
requirement have not been in the focus and will be addressed
in future work. Although the POPART code is subject to
adaptive optimization provided by the just-in-time compiler
of the Java VM due to the tight integration of Groovy into
Java, a large run-time overhead has been measured for the
Groovy-specific features especially for the Groovy MOP. It
would be interesting to investigate if the Groovy JIT [22]
is also suited to reduce the overhead imposed by our MAP.
Also, optimistic optimizations similar to those proposed for
MOPs [27, 43] could be applied. Partial reflection [45] could
also be investigated as a means to optimize the reification
overhead in our instrumentation modules. We would like to

use Steamloom [42] for a dynamic adjustable instrumenta-
tion, which could virtually remove our run-time overhead in
case no aspects are defined by withdrawing the instrumen-
tation if it is not needed.

7. ACKNOWLEDGMENTS
This work was partly supported by the feasiPLe project,

Federal Ministry of Education and Research (BMBF), Ger-
many. We would like to thank Michael Eichberg, Vaidas
Gasiunas, and Martin Monperrus for valuable discussions
and the anonymous reviewers for their comments.

8. REFERENCES
[1] P. Avgustinov, T. Ekman, and J. Tibble. Modularity

first: A Case for mixing AOP and Attribute
Grammars. In AOSD, pages 25–35, 2008.

[2] P. Avgustinov, J. Tibble, A. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, and G. Sittampalam. abc: An extensible
AspectJ Compiler. In AOSD, pages 87–98, 2005.

[3] L. Bergmans and M. Aksit. Composing Crosscutting
Concerns using Composition Filters. Communications
of the ACM, 44(10):51–57, 2001.

[4] L. Bergmans and M. Aksit. Principles and Design
Rationale of Composition Filters. Aspect-Oriented
Software Development. Addison-Wesley, pages 0–32,
2004.

[5] C. Bockisch, M. Haupt, M. Mezini, and
K. Ostermann. Virtual Machine Support for Dynamic
Join Points. In AOSD, pages 83–92, 2004.

[6] C. Bockisch, M. Mezini, W. Havinga, L. Bergmans,
and K. Gybels. Reference Model Implementation.
Technical Report AOSD-Europe-TUD-8, Technische
Universität Darmstadt, 2007.

[7] J. Brichau, K. Mens, and K. De Volder. Building
Composable Aspect-Specific Languages with Logic
Metaprogramming. In GPCE, pages 110–127, 2002.

[8] J. Brichau, M. Mezini, J. Noyé, W. Havinga,
L. Bergmans, V. Gasiunas, C. Bockisch, J. Fabry, and
T. D’Hondt. An Initial Metamodel for
Aspect-Oriented Programming Languages.
http://www.aosd-

europe.net/deliverables/d39.pdf, 2006.

[9] N. Cacho, T. Batista, and F. Fernandes. AspectLua-A
Dynamic AOP Approach. Journal of Universal
Computer Society, 11(7):1177–1197, 2005.

[10] CaesarJ Homepage. http://caesarj.org/.

[11] T. Dinkelaker and M. Mezini. Dynamically Linked
Domain-Specific Extensions for Advice Languages. In
Workshop on Domain-Specific Aspect Languages, 2008.

[12] R. Douence, P. Fradet, and M. Südholt. A Framework
for the Detection and Resolution of Aspect
Interactions. In GPCE, pages 173–188, 2002.

[13] M. Eaddy, A. Aho, W. Hu, P. McDonald, and
J. Burger. Debugging Aspect-Enabled Programs.
Symposium on Software Composition, pages 200–215,
2007.

[14] M. Fayad, D. Schmidt, and R. Johnson. Building
Application Frameworks: Object-Oriented Foundations
of Framework Design. John Wiley, NY, USA, 1999.

61

http://www.aosd-
europe.net/deliverables/d39.pdf
http://caesarj.org/

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of reusable Object-Oriented
Software. Addison-Wesley Professional, 1995.

[16] A. Goldberg and D. Robson. Smalltalk-80: the
Language and its Implementation. Addison-Wesley,
Boston, MA, USA, 1983.

[17] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition.
Addison-Wesley, Boston, Mass, 2000.

[18] The Groovy Home Page.
http://groovy.codehaus.org/.

[19] W. Havinga, L. Bergmans, and M. Aksit. Prototyping
and Composing Aspect Languages using an Aspect
Interpreter Framework . In ECOOP, pages 180–206,
2008.

[20] R. Hirschfeld. AspectS: AOP with Squeak. In
OOPSLA Workshop on Advanced Separation of
Concerns in OO Systems, 2001.

[21] R. Hirschfeld. AspectS: Aspect-Oriented Programming
with Squeak. In Netobjectdays (NODe), pages
216–232, 2003.

[22] C. Kaewkasi and J. Gurd. Groovy AOP: A Dynamic
AOP System for a JVM-based Language. In Workshop
on Software Engineering Properties of Languages and
Aspect Technologies, 2008.

[23] D. O. Keck and P. J. Kuehn. The Feature and Service
Interaction Problem in Telecommunications Systems:
A Survey. IEEE Trans. Softw. Eng., 24(10):779–796,
1998.

[24] G. Kiczales. Beyond the Black Box: Open
Implementation. IEEE Software, 13(1):8–11, 1996.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In ECOOP, pages 327–353, 2001.

[26] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In ECOOP, pages 220–242, 1997.

[27] G. Kiczales, J. d. Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, 1991.

[28] G. Kniesel. Detection and Resolution of Weaving
Interactions. TAOSD: Dependencies and Interactions
with Aspects, LNCS, 2007. Special Issue on Aspect
Dependencies and Interactions, edited by R.
Chitchyan.

[29] S. Kojarski and D. Lorenz. AOP as a First Class
Reflective Mechanism. In OOPSLA, pages 216–217,
2004.

[30] S. Kojarski and D. Lorenz. Modeling Aspect
Mechanisms: A top-down Approach. In ICSE, pages
212–221, 2006.

[31] S. Kojarski and D. Lorenz. Awesome: an Aspect
Co-Weaving System for Composing Multiple
Aspect-Oriented Extensions. In OOPSLA, pages
515–534, 2007.

[32] D. König and A. Glover. Groovy in Action. Manning,
2007.

[33] D. Lorenz and S. Kojarski. Reflective Mechanisms in
AOP Languages. Technical report, Northeastern, 2003.

[34] D. Lorenz and S. Kojarski. Understanding Aspect
Interactions, Co-Advising and Foreign Advising. In
ECOOP Workshop Aspects, Dependencies and
Interactions, Berlin, Germany, 2007.

[35] H. Masuhara, Y. Endoh, and A. Yonezawa. A
Fine-Grained Join Point Model for More Reusable
Aspects. LNCS Programming Languages and Systems,
4279:131, 2006.

[36] H. Masuhara, G. Kiczales, and C. Dutchyn. A
Compilation and Optimization Model for
Aspect-Oriented Programs. In CC 2003, volume 2622
of LNCS, pages 46–60, 2003.

[37] J. Pang and L. Blair. An Adaptive Run Time
Manager for the Dynamic Integration and Interaction
Resolution of Features. In Distributed Computing
Systems, pages 445–450, 2002.

[38] J. Pang and L. Blair. Separating Interaction Concerns
from Distributed Feature Components. Electronic
Notes in Theoretical Computer Science, 82(5):70–84,
2003.

[39] The PROSE Homepage.
http://prose.ethz.ch/Wiki.jsp.

[40] A. Rashid. Aspects and Evolution: The Case for
Versioned Types and Meta-Aspect Protocols. In
Workshop on Reflection, AOP, and Meta-Data for
Software Evolution, 2006.

[41] F. Sanen, E. Truyen, and W. Joosen. Modeling
Context-Dependent Aspect Interference using Default
Logics. In ECOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution, 2008.

[42] The Steamloom Homepage. http:
//www.st.informatik.tu-darmstadt.de/Steamloom.

[43] G. Sullivan. Aspect-Oriented Programming using
Reflection and Metaobject Protocols. Communications
of the ACM, 44(10):95–97, 2001.

[44] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
An Aspect-Oriented Approach tailored for Component
based Software Development. In AOSD, pages 21–29,
2003.

[45] É. Tanter. From Metaobject Protocols to Versatile
Kernels for Aspect-Oriented Programming. PhD
thesis, Université de Nantes, France, 2004.

[46] E. Tanter. Aspects of Composition in the Reflex AOP
Kernel. LNCS, 4089:98, 2006.

[47] N. Ubayashi, H. Masuhara, and T. Tamai. An AOP
Implementation Framework for Extending Join Point
Models. In ECOOP Workshop on Reflection, AOP
and Meta-Data for Software Evolution, 2004.

[48] D. Wampler. Aquarium: AOP in Ruby. In AOSD,
2008.

62

http://groovy.codehaus.org/
 http://prose.ethz.ch/Wiki.jsp
http://www.st.informatik.tu-darmstadt.de/Steamloom
http://www.st.informatik.tu-darmstadt.de/Steamloom

	Introduction
	Background
	Open Implementation and Meta-Object Protocols
	Groovy

	POPART Meta-Aspect Protocol
	High-Level View of POPART
	Aspects, Pointcuts, Advice, Join Points
	Aspects
	Pointcuts and Join Points

	Managing and Composing Aspects
	From Aspect Programs to Meta-Level Entities
	Composing Aspects at Run-Time

	Variation Points in POPART

	Creating Variant Languages
	Adding Pointcut Debugging Support
	Customizing Aspect Composition
	Customizing Advice Ordering
	Resolving Context-Dependent Aspect Interactions

	Extending the Primary Interface

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

